Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Signal Transduct Target Ther ; 8(1): 194, 2023 05 09.
Article in English | MEDLINE | ID: covidwho-2317960

ABSTRACT

Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection. Here, we uncovered SARS-CoV-2 imployed a distinct anti-apoptotic mechanism via its N protein. We found SARS-CoV-2 virus-like particles (trVLP) suppressed cell apoptosis, but the trVLP lacking N protein didn't. Further study verified that N protein repressed cell apoptosis in cultured cells, human lung organoids and mice. Mechanistically, N protein specifically interacted with anti-apoptotic protein MCL-1, and recruited a deubiquitinating enzyme USP15 to remove the K63-linked ubiquitination of MCL-1, which stabilized this protein and promoted it to hijack Bak in mitochondria. Importantly, N protein promoted the replications of IAV, DENV and ZIKV, and exacerbated death of IAV-infected mice, all of which could be blocked by a MCL-1 specific inhibitor, S63845. Altogether, we identifed a distinct anti-apoptotic function of the N protein, through which it promoted viral replication. These may explain how SARS-CoV-2 effectively replicates in asymptomatic individuals without cuasing respiratory dysfunction, and indicate a risk of enhanced coinfection with other viruses. We anticipate that abrogating the N/MCL-1-dominated apoptosis repression is conducive to the treatments of SARS-CoV-2 infection as well as coinfections with other viruses.


Subject(s)
COVID-19 , Coinfection , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , SARS-CoV-2 , COVID-19/genetics , Virus Replication/genetics , Ubiquitin-Specific Proteases
3.
Viruses ; 15(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2216942

ABSTRACT

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Male , Antibodies, Viral/metabolism , Flavivirus/metabolism , Proteins/metabolism , Viral Envelope Proteins/metabolism , Zika Virus/physiology
4.
Mol Ther ; 31(2): 344-361, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2159943

ABSTRACT

Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.


Subject(s)
Acute Kidney Injury , COVID-19 , Diabetes Mellitus, Experimental , Mice , Animals , SARS-CoV-2 , COVID-19/complications , Quercetin/pharmacology , Diabetes Mellitus, Experimental/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Mice, Inbred Strains , Cell Cycle Checkpoints
5.
Int J Biol Sci ; 18(12): 4704-4713, 2022.
Article in English | MEDLINE | ID: covidwho-1954690

ABSTRACT

COVID-19 which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has posed a worldwide pandemic and a major global public health threat. SARS-CoV-2 Nucleocapsid (N) protein plays a critical role in multiple steps of the viral life cycle and participates in viral replication, transcription, and assembly. The primary roles of N protein are to assemble with genomic RNA into the viral RNA-protein (vRNP) complex and to localize to the replication transcription complexes (RTCs) to enhance viral replication and transcription. N protein can also undergo liquid-liquid phase separation (LLPS) with viral genome RNA and inhibit stress granules to facilitate viral replication and assembly. Besides the function in viral life cycle, N protein can bind GSDMD to antagonize pyroptosis but promotes cell death via the Smad3-dependent G1 cell cycle arrest mechanism. In innate immune system, N protein inhibits IFN-ß production and RNAi pathway for virus survival. However, it can induce expression of proinflammatory cytokines by activating NF-κB signaling and NLRP3 inflammasome, resulting in cytokine storms. In this review article, we are focusing on the signaling mechanisms of SARS-CoV-2 N protein in viral replication, cell death and inflammation.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Death , Cytokine Release Syndrome , Humans , RNA, Viral
6.
World J Clin Cases ; 10(1): 1-11, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1732499

ABSTRACT

The appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529) has caused panic responses around the world because of its high transmission rate and number of mutations. This review summarizes the highly mutated regions, the essential infectivity, transmission, vaccine breakthrough and antibody resistance of the Omicron variant of SARS-CoV-2. The Omicron is highly transmissible and is spreading faster than any previous variant, but may cause less severe symptoms than previous variants. The Omicron is able to escape the immune system's defenses and coronavirus disease 2019 vaccines are less effective against the Omicron variant. Early careful preventive steps including vaccination will always be key for the suppression of the Omicron variant.

7.
Adv Sci (Weinh) ; 9(3): e2103248, 2022 01.
Article in English | MEDLINE | ID: covidwho-1527412

ABSTRACT

COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which worsens in mice under ischemic condition. Mechanistically, it is uncovered that SARS-CoV-2 N-induced AKI is Smad3-dependent as SARS-CoV-2 N protein can interact with Smad3 and enhance TGF-ß/Smad3 signaling to cause tubular epithelial cell death and AKI via the G1 cell cycle arrest mechanism. This is further confirmed in Smad3 knockout mice and cells in which deletion of Smad3 protects against SARS-CoV-2 N protein-induced cell death and AKI in vivo and in vitro. Most significantly, it is also found that targeting Smad3 with a Smad3 pharmacological inhibitor is able to inhibit SARS-CoV-2 N-induced AKI. In conclusion, the authors identify that SARS-CoV-2 N protein is a key mediator for AKI and induces AKI via the Smad3-dependent G1 cell cycle arrest mechanism. Targeting Smad3 may represent as a novel therapy for COVID-19-asscoaited AKI.


Subject(s)
Acute Kidney Injury , COVID-19 , Coronavirus Nucleocapsid Proteins , G1 Phase Cell Cycle Checkpoints , SARS-CoV-2 , Smad3 Protein , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Animals , COVID-19/genetics , COVID-19/metabolism , Cell Line , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Knockout , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
9.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: covidwho-1389523

ABSTRACT

SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-ß) production. N protein repressed IFN-ß production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-ß production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-ß response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-ß production by interfering with RIG-I.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-beta/metabolism , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , A549 Cells , Animals , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Protein Interaction Domains and Motifs , Receptors, Immunologic , Signal Transduction
10.
Signal Transduct Target Ther ; 6(1): 308, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1364579

ABSTRACT

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses. RNA sequencing shows that HIF-1α signaling, immune response, and metabolism pathways are dysregulated in COVID-19 patients. Clinical analyses indicate that HIF-1α production, inflammatory responses, and high mortalities occurr in elderly patients. HIF-1α and pro-inflammatory cytokines are elicited in patients and infected cells. Interestingly, SARS-CoV-2 ORF3a induces mitochondrial damage and Mito-ROS production to promote HIF-1α expression, which subsequently facilitates SARS-CoV-2 infection and cytokines production. Notably, HIF-1α also broadly promotes the infection of other viruses. Collectively, during SARS-CoV-2 infection, ORF3a induces HIF-1α, which in turn aggravates viral infection and inflammatory responses. Therefore, HIF-1α plays an important role in promoting SARS-CoV-2 infection and inducing pro-inflammatory responses to COVID-19.


Subject(s)
COVID-19/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Viroporin Proteins/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Mitochondria/pathology , RNA-Seq , THP-1 Cells , Vero Cells
11.
Nat Commun ; 12(1): 4664, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338538

ABSTRACT

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Cytokines/metabolism , HEK293 Cells , Humans , Inflammasomes/genetics , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphoproteins/metabolism , Protein Binding , SARS-CoV-2/physiology , THP-1 Cells
12.
Int J Biol Sci ; 17(6): 1497-1506, 2021.
Article in English | MEDLINE | ID: covidwho-1206425

ABSTRACT

Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-ß signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-ß OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Inflammation/etiology , SARS-CoV-2/isolation & purification , Stress, Physiological , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , COVID-19/virology , Complement Activation , Cytokine Release Syndrome , Diabetes Complications/metabolism , Humans , Renal Replacement Therapy
13.
J Med Virol ; 92(4): 424-432, 2020 04.
Article in English | MEDLINE | ID: covidwho-827679

ABSTRACT

Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , Coronavirus/classification , Coronavirus/physiology , Coronavirus/ultrastructure , Coronavirus Infections/pathology , Dendritic Cells/immunology , Humans , Immunity, Innate , Inflammation , Lung/immunology , Lung/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/immunology
14.
World J Clin Cases ; 8(8): 1391-1399, 2020 Apr 26.
Article in English | MEDLINE | ID: covidwho-188089

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that can transmit through respiratory droplets, aerosols, or contacts. Frequent touching of contaminated surfaces in public areas is therefore a potential route of SARS-CoV-2 transmission. The inanimate surfaces have often been described as a source of nosocomial infections. However, summaries on the transmissibility of coronaviruses from contaminated surfaces to induce the coronavirus disease 2019 are rare at present. This review aims to summarize data on the persistence of different coronaviruses on inanimate surfaces. The literature was systematically searched on Medline without language restrictions. All reports with experimental evidence on the duration persistence of coronaviruses on any type of surface were included. Most viruses from the respiratory tract, such as coronaviruses, influenza, SARS-CoV, or rhinovirus, can persist on surfaces for a few days. Persistence time on inanimate surfaces varied from minutes to up to one month, depending on the environmental conditions. SARS-CoV-2 can be sustained in air in closed unventilated buses for at least 30 min without losing infectivity. The most common coronaviruses may well survive or persist on surfaces for up to one month. Viruses in respiratory or fecal specimens can maintain infectivity for quite a long time at room temperature. Absorbent materials like cotton are safer than unabsorbent materials for protection from virus infection. The risk of transmission via touching contaminated paper is low. Preventive strategies such as washing hands and wearing masks are critical to the control of coronavirus disease 2019.

SELECTION OF CITATIONS
SEARCH DETAIL